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Summary

The worldwide growth of aquaculture has been
accompanied by a rapid increase in therapeutic and
prophylactic usage of antimicrobials including those
important in human therapeutics. Approximately 80%
of antimicrobials used in aquaculture enter the envi-
ronment with their activity intact where they select for
bacteria whose resistance arises from mutations
or more importantly, from mobile genetic elements
containing multiple resistance determinants trans-
missible to other bacteria. Such selection alters bio-
diversity in aquatic environments and the normal
flora of fish and shellfish. The commonality of the
mobilome (the total of all mobile genetic elements in a
genome) between aquatic and terrestrial bacteria
together with the presence of residual antimicrobials,
biofilms, and high concentrations of bacteriophages
where the aquatic environment may also be contami-
nated with pathogens of human and animal origin can
stimulate exchange of genetic information between
aquatic and terrestrial bacteria. Several recently
found genetic elements and resistance determinants
for quinolones, tetracyclines, and b-lactamases are

shared between aquatic bacteria, fish pathogens, and
human pathogens, and appear to have originated in
aquatic bacteria. Excessive use of antimicrobials in
aquaculture can thus potentially negatively impact
animal and human health as well as the aquatic
environment and should be better assessed and
regulated.

Introduction

Even though much of the rapid growth of aquaculture over
the past quarter century has taken place in Asia (Arthur
et al., 2000; Costa-Pierce, 2003; 2010; Naylor and Burke,
2005; Asche et al., 2008; Cole et al., 2009; Diana, 2009),
development and application of intensive methods of
salmon farming in Norway and Chile have resulted in their
being among the top 12 aquacultural producers of animal
protein in the world (Chopin et al., 2008; FAO, 2010). This
widespread growth of aquaculture has been accompanied
by an increased use of a wide range of chemicals includ-
ing antimicrobials (Haya et al., 2001; Armstrong et al.,
2005; Cabello, 2006; Buschmann et al., 2009; Cole et al.,
2009; Asche et al., 2010; Burridge et al., 2010; Millanao
et al., 2011). Increases in aquacultural antimicrobial use
have been difficult to assess because of the large size
and geographical extent of the industry, the various
modalities employed (i.e. extensive, integrated, and inten-
sive), and the over 200 species of fish and shellfish
involved (Austin, 1985; Arthur et al., 2000; Costa-Pierce,
2003; 2010; Naylor and Burke, 2005; Asche et al., 2008;
2010; Asche, 2009; Diana, 2009). Collection of informa-
tion about antimicrobial use in aquaculture is further com-
plicated by a wide range of proprietorship (family units,
village ownership, small businesses, international con-
glomerates) (Austin, 1985; Costa-Pierce, 2003; 2010;
Naylor and Burke, 2005; Asche et al., 2008; Asche, 2009;
Diana, 2009; Rodgers and Furones, 2009) as well as by
differing national regulations which often do not encour-
age data collection for purposes of animal and public
health and epidemiology (Asche et al., 2008; Asche,
2009; Burridge et al., 2010; Millanao et al., 2011).
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Despite these impediments, available information has
revealed widespread geographical heterogeneity in the
amounts and classes of antimicrobials used in aquaculture
(Burridge et al., 2010; Millanao et al., 2011; Ndi and
Barton, 2012). It has also indicated that intensive aquac-
ulture in some countries is an especially important source
for passage of antimicrobials into the aquatic environment
with potential effects on the health of fish, terrestrial
animals, human beings, and the environment in general
(Burridge et al., 2010; Millanao et al., 2011; Miranda,
2012). One of us has previously succinctly reviewed anti-
microbial use in aquaculture and the implications of this
use for biodiversity and human health (Cabello, 2006). This
present more comprehensive review examines recently
emerging and past information about antimicrobial use in
aquaculture and its impact on the molecular genetics and
evolution of antimicrobial resistance in the environment.
Some aspects of this review concentrate on salmon aqua-
culture because of the availability of relatively reliable
information obtained by us about this industry’s usage of
antimicrobials (Millanao, 2002; Barrientos, 2006; Gómez,
2009; Millanao et al., 2011) and because of the important
potential impacts of this rapidly growing industry on aquatic
biodiversity, antimicrobial resistance evolution, and
piscine, terrestrial animal and human health.

Antimicrobial use in aquaculture

Classes and amounts

A large proportion, perhaps half, of the world’s industrial
production of antimicrobials is consumed in terrestrial
animal agriculture; their use as prophylactics and as
growth promoters far outweighs their use as therapeutics
(Mellon et al., 2001; Sarmah et al., 2006; Davies, 2009;
Davies and Davies, 2010; Levy and Marshall, 2010; Bush
et al., 2011; Marshall and Levy, 2011). Antimicrobials are
used in aquaculture not to promote growth but rather to
prevent and treat bacterial infections in fish and inverte-
brates. These arise as a consequence of lowered host
defences associated with culture at high density with sub-
optimal hygiene in enclosures in close proximity (Austin,
1985; Barton and Iwama, 1991; Grave et al., 1999; Arthur

et al., 2000; Woo et al., 2002; Beveridge, 2004;
Armstrong et al., 2005; Defoirdt et al., 2007; Sapkota
et al., 2008; Grave and Hansen, 2009; Rodgers and
Furones, 2009; Burridge et al., 2010; Millanao et al., 2011;
Austin and Austin, 2012). These conditions, often associ-
ated with efforts to increase productivity, in turn favour
development and epizootic dissemination of bacterial
infections among aquaculture units in a geographical area
(Barton and Iwama, 1991; Burka et al., 1997; Grave et al.,
1999; Sørum, 2000; 2006; Woo et al., 2002; Beveridge,
2004; Cabello, 2006; Cole et al., 2009; Grave and
Hansen, 2009; Asche et al., 2010; Barton and Floysand,
2010; Ibieta et al., 2011; Millanao et al., 2011). In salmon
aquaculture, the need to grow different developmental
stages in fresh and salt water and the manipulations to
transport them between these two environments also
increases stress and the opportunities for contact
between different populations of fish, thus increasing
opportunities for cross infection (Woo et al., 2002;
Beveridge, 2004; Ibieta et al., 2011).

Aquacultural use of antimicrobials in developed coun-
tries has generally been restricted to avoid potential
selection for human pathogens resistant to antimicrobials
effective in clinical practice (Grave et al., 1999; Collignon
et al., 2009; Grave and Hansen, 2009; Heuer et al., 2009;
Burridge et al., 2010). Canada, Norway and the United
States permit aquacultural use of oxytetracycline, Canada
and Norway permit use of florfenicol, and Norway permits
aquacultural use of quinolones (Table 1) (Grave et al.,
1999; Sapkota et al., 2008; Rodgers and Furones, 2009;
Burridge et al., 2010). Information regarding classes of
antimicrobials used in aquaculture is undoubtedly incom-
plete even in industrialized countries because regulatory
agencies have failed to collect this information (Sapkota
et al., 2008; Burridge et al., 2010; Marshall and Levy,
2011).

The situation is more problematic in countries where
control is less stringent or lacking (Sapkota et al., 2008;
Burridge et al., 2010; Marshall and Levy, 2011; Millanao
et al., 2011). In contrast to the United States, Norway and
Canada, Chile, the second largest producer of cultured
salmon after Norway, not only permits aquacultural use of
oxytetracycline, florfenicol, and quinolones, but also

Table 1. Antimicrobials currently authorized for use in salmon aquaculture in various countries.a

Oxytetracycline Florfenicol
Sulfa/trimethoprim
derivatives Quinolones Others

Canada + + +
Chile + + + (Oxolinic acid, Flumequin, others) Amoxicillin, Erythromycin, Furazolidin

Chloramphenicol, Gentamycin
Norway + + + (Oxolinic acid, Flumequin)
United States + +

a. Burridge et al. (2010)
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allows use of amoxicillin, erythromycin and several other
antimicrobials (Table 1) (Grave et al., 1999; Sapkota
et al., 2008; Grave and Hansen, 2009; Rodgers and
Furones, 2009; Burridge et al., 2010). According our own
investigations, agricultural regulators in Chile have con-
sistently failed to successfully track and limit veterinary
use of antimicrobials (Millanao, 2002; Barrientos, 2006;
Millanao et al., 2011). Between 1998 and 2004, 1.5 to
3.4 times more quinolones and fluoroquinolones were
imported into Chile for veterinary medicine and used pref-
erentially in aquaculture than were authorized by the
national Livestock and Agricultural Service (Fig. 1). This
ratio fell to 1.2 in 2005 (although use was still high)
perhaps because permits were increased (Fig. 1), sug-
gesting there was previously an unregulated market for
veterinary use of these drugs (Millanao, 2002; Barrientos,
2006; Millanao et al., 2011; A. Millanao and H. Dölz,
unpublished). Quinolones such as oxolinic acid and
flumequine comprise most of the quinolones imported to
Chile and together with florfenicol are mostly used in
aquaculture (Millanao, 2002; Barrientos, 2006; Millanao
et al., 2011). Studies of antimicrobial resistance in lower
intensity fish and shrimp aquacultural settings also
suggest that many classes of antimicrobials are employed
in these activities as well (Holmström et al., 2003; Le
and Munekage, 2004; Le et al., 2005; Hastein et al.,
2006). Detection of nitrofurans by the Food and Drug
Administration in aquacultural products imported to
the United States from China (Burridge et al., 2010; Love
et al., 2011), and detection of chloramphenicol and
metronidazole by the European Union regulatory
authorities in seafood imported from China, Indonesia,
Taiwan, Thailand and Vietnam provide additional
evidence for lax control of antimicrobial use in other less
industrialized countries (Rodgers and Furones, 2009;
Love et al., 2011).

There is a great variability in the amounts and classes
of antimicrobials used in salmon, shrimp and other forms
of aquaculture from country to country (Grave et al., 1999;
2006; Holmström et al., 2003; Le and Munekage, 2004;
Grave and Hansen, 2009; Burridge et al., 2010; Millanao
et al., 2011). For example, Japanese aquaculture used
179 metric tons of antimicrobials in 2001, slightly more
than a third of the amount used in human medicine that
year (Furushita and Shiba, 2007). The situation was quite
different in intensive salmon aquaculture in Chile. Impor-
tation of antimicrobials to Chile in the period 2000–2007
for use in veterinary medicine increased in parallel with
salmonid production (Figs 1 and 2). It was several times
greater than importation of antimicrobials for human medi-
cine which increased only slightly over this time (Millanao,
2002; Barrientos, 2006; Gómez, 2009; Millanao et al.,
2011). While Norway, the United Kingdom and Canada
used approximately 0.0008 kg, 0.0117 kg, and 0.175 kg,
respectively, of antimicrobials for each metric ton of
salmon produced in 2007, Chile used at least 1.4 kg per
metric ton (Fig. 2) (SalmonChile, 2008; Gómez, 2009;
Burridge et al., 2010; Millanao et al., 2011; A. Millanao
and H. Dölz, unpublished). Thus, considerably more anti-
microbials were used in Chile than in Norway or Canada
to produce one metric ton of salmon (approximately over
1500 and eight times more respectively) (Millanao, 2002;
Barrientos, 2006; Gómez, 2009; Burridge et al., 2010;
Millanao et al., 2011; A. Millanao and H. Dölz, unpub-
lished). Approximately 471, 233, and 226 metric tons of
tetracycline, florfenicol, and quinolones, respectively,
were estimated to have been used in Chile in 2007 in
veterinary medicine (Millanao, 2002; Barrientos, 2006;
Millanao et al., 2011). These 930 metric tons of antimicro-
bials were mostly used in salmon aquaculture (Millanao,
2002; Barrientos, 2006; Gómez, 2009; Millanao et al.,
2011).

Fig. 1. Authorized and imported quantities
(metric tons) of quinolones and fluoro-
quinolones for human and veterinary medical
use in Chile, 1998–2005. Quinolones-
fluoroquinolones authorized for import for
human use by the Chilean Institute of Public
Health (white bars) and actually imported
(hatched bars). Quinolones-fluoroquinolones
authorized for import for veterinary use by the
Chilean Agricultural and Livestock Service
(black bars) and actually imported (grey bars).
Modified from (Millanao, 2002; Barrientos, 2006;
Millanao et al., 2011; A. Millanao and H. Dölz,
unpublished).
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Antimicrobials in water and sediments

Antimicrobials used in aquaculture are administered to
fish mostly in food and only rarely by injection or bath
(Capone et al., 1996; Herwig et al., 1997; Armstrong
et al., 2005; Sørum, 2006; Rodgers and Furones, 2009).
This method of administration leads to their affecting both
diseased and healthy fish (metaphylaxis) in the population
(Sørum, 2006). Unconsumed medicated food (perhaps as
much as 30% of that supplied if fish are diseased and
anorexic) is deposited by gravity in sediments under and
around aquaculture sites (Björklund et al., 1990; Capone
et al., 1996; Herwig et al., 1997; Armstrong et al., 2005;
Sarmah et al., 2006; Sørum, 2006; Sapkota et al., 2008;
Pelletier et al., 2009; Rodgers and Furones, 2009). Of
the ingested antimicrobials, approximately 80% pass into
the environment in unabsorbed form in faeces or after
absorption, in secreted forms in urine and other secre-
tions (Björklund et al., 1990; Hektoen et al., 1995; Capone
et al., 1996; Burka et al., 1997; Le and Munekage, 2004;
Armstrong et al., 2005; Sørum, 2006). These also accu-
mulate in the sediments under and around the aquacul-
ture pens (Björklund et al., 1990; Hektoen et al., 1995;
Capone et al., 1996; Arthur et al., 2000; Coyne et al.,
2001; Le and Munekage, 2004; Armstrong et al., 2005)
from where they can be carried by water currents to
sediments at distant sites (Samuelsen et al., 1992b;
Capone et al., 1996; Coyne et al., 1997; 2001; Arthur
et al., 2000; Fortt et al., 2007; Buschmann et al., 2012). In
places where hundreds of metric tons of antimicrobials
are used per year in a limited geographical area, antimi-
crobials may remain in large amounts for far longer
periods of time than was previously thought to occur
(Asche et al., 2010; Burridge et al., 2010; Millanao et al.,
2011; Buschmann et al., 2012). Antimicrobials leached
from sediments as well as from ingestion of uneaten
medicated feed can also potentially affect free-ranging

fish, shellfish and other animals in proximity to aquacul-
ture sites (Björklund et al., 1990; Samuelsen et al., 1992b;
Capone et al., 1996; Coyne et al., 1997; Fortt et al.,
2007).

The length of time untransformed and transformed anti-
microbial activity remains in sediments is dependent on
the initial concentrations of antimicrobials (i.e. propor-
tional to the total amounts used at aquaculture sites), their
chemical structures, and the half-life of these compounds
(Björklund et al., 1990; 1991; Husevåg et al., 1991;
Samuelsen et al., 1994; Hektoen et al., 1995; Capone
et al., 1996; Kerry et al., 1996; Arthur et al., 2000;
Chelossi et al., 2003; Boxall et al., 2004; Kummerer,
2009). Environmental chemical and physical variables
such as sediment characteristics, water currents, tem-
perature, light and pH also influence the length of time
sediments retain antimicrobial activity (Capone et al.,
1996; Kummerer, 2009). Leaching into water and dis-
persion by currents appears to be the main mechanism
mediating decreases in antimicrobial concentrations in
sediments rather than degradation per se, but this has
not been extensively studied (Björklund et al., 1990;
Samuelsen et al., 1992a; 1994; Hektoen et al., 1995;
Kummerer, 2009). Field and laboratory investigations
have indicated that detectable concentrations of
biologically-active oxytetracycline remain in sediments for
months to more than a year (Björklund et al., 1990;
Hektoen et al., 1995; Capone et al., 1996; Coyne et al.,
2001; Koeypudsa et al., 2005). Studies on artificial marine
sediments suggest that non-degradable quinolones such
as oxolinic acid and flumequine may persist close to
aquaculture sites months after their utilization (Hansen
et al., 1993; Samuelsen et al., 1994; Hektoen et al., 1995;
Lai and Lin, 2009). Similar studies with sulfa drugs, tri-
methoprim and florfenicol also suggest that these remain
active in sediments for several months (Samuelsen et al.,
1994; Hektoen et al., 1995; Capone et al., 1996; Hoa

Fig. 2. Production of salmon and trout in Chile
and net imports of selected antimicrobials for
veterinary use (both in metric tons) to Chile,
2000–2007. Production of salmon and trout
(�); imports of tetracyclines (D), quinolones/
fluoroquinolones (�), and florfenicol (∇).
Modified from (Millanao, 2002; Barrientos,
2006; SalmonChile, 2008; Gómez, 2009;
Millanao et al., 2011; A. Millanao and H. Dölz,
unpublished).
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et al., 2008). Although florfenicol disappears in a few
days, one of its derivatives, florfenicol amine, remains in
sediments for months (Hektoen et al., 1995). The half-life
of antimicrobials within and under sediments is also pro-
longed; they continue to be able to exert selective pres-
sure in this location for an extended period of time
(Hektoen et al., 1995; Capone et al., 1996). Antimicrobials
such as tetracycline can exert antimicrobial activity even if
they adsorb to sediments and react with inhibitory cations
such as Mg2+ and Ca2+, especially in areas where large
amounts are used and subinhibitory concentrations are
maintained in the environment (Barnes et al., 1995;
Lunestad and Goksøyr, 2010). Some authors have
claimed that antimicrobials such as tetracycline do not
end up in sediments because only minimal amounts are
detectable there (Smith, 1996; Miranda, 2012). The subin-
hibitory concentrations of antimicrobials in the sediment
postulated by supporters of this hypothesis would still
have sufficient biological activity to affect horizontal gene
transfer (HGT) and mutagenesis in bacteria (Beaber
et al., 2004; Hastings et al., 2004; Davies, 2009; Gullberg
et al., 2011). In fact, concentrations of antimicrobials
detected in sediments in several studies are still many
times greater than the minimal inhibitory concentrations
for most bacteria (Samuelsen, 1989; Björklund et al.,
1991; Samuelsen et al., 1992a; Capone et al., 1996;
Smith, 1996; Tello et al., 2012).

Effects of antimicrobials in the aquacultural
environment

Selection of antimicrobial-resistant bacteria

Significant concentrations of antimicrobials remaining for
long periods of time in the aquatic environment are the
principal selective pressure for antimicrobial resistance in
bacteria in sediments and the overlying water column
(Samuelsen et al., 1994; Hektoen et al., 1995; Capone
et al., 1996; Herwig et al., 1997; Petersen et al., 2002;
Giraud et al., 2006; Dang et al., 2007; Baquero et al.,
2008; 2009; Ding and He, 2010; Marshall and Levy,
2011). The impact of this process leads to a major altera-
tion of the biodiversity of the sediment and water by
replacing susceptible communities of bacteria and other
microorganisms with resistant ones. This impact has
been extensively documented both in the laboratory and
in the field (DePaola et al., 1995; Capone et al., 1996;
Herwig and Gray, 1997; Herwig et al., 1997; Holten
Lützhøft et al., 1999; Arthur et al., 2000; Guardabassi
et al., 2000; Miranda and Zemelman, 2002a,b; Kim
et al., 2004; 2011; Le and Munekage, 2004; Alcaide et al.,
2005; Le et al., 2005; Akinbowale et al., 2006;
2007; Christensen et al., 2006; Giraud et al., 2006;
Cordova-Kreylos and Scow, 2007; Dang et al., 2007;
2011; Gonçalves Ferreira et al., 2007; Gordon et al.,

2007; Miranda and Rojas, 2007; Heepngoen et al., 2008;
American Academy of Microbiology, 2009; Ding and He,
2010; Fernández-Alarcón et al., 2010; Ishida et al., 2010;
Andersson and Hughes, 2011). Significant increases in
the frequency of bacteria resistant to oxytetracycline, qui-
nolones, sulfa/trimethoprim, florfenicol, and amoxicillin
have been repeatedly found in proximity to aquaculture
farms employing these antimicrobials, suggesting a
causal relationship between these variables (DePaola
et al., 1995; Guardabassi et al., 2000; Schmidt et al.,
2000; Dang et al., 2007; Gordon et al., 2007; Suzuki,
2010). Moreover, antimicrobial-resistant bacteria are
found at aquaculture sites for a prolonged period of time
after antimicrobial use, further suggesting the relevance
of this selection over time (Husevåg et al., 1991;
Tamminen et al., 2011b). Laboratory models using
aquatic sediments have consistently demonstrated that
introduction of antimicrobials is accompanied by
increases in the frequency of antimicrobial-resistant bac-
teria (Hansen et al., 1993; Herwig and Gray, 1997;
Stepanauskas et al., 2006) and, as expected from the
modular clustering of antimicrobial resistant genetic ele-
ments, introduction of one antimicrobial can give rise to
bacteria resistant to other antimicrobials that are not even
in use in the area (Herwig and Gray, 1997; Le et al.,
2005; Alekshun and Levy, 2007; Stokes and Gillings,
2011). Whether these antimicrobials remain in the sedi-
ment or leach into the surrounding water, the end result is
still selection of antimicrobial-resistant bacteria (Davies
and Davies, 2010; Marshall and Levy, 2011; Buschmann
et al., 2012).

The fact that Chilean salmon aquaculture experienced
epizootics and infestations resulting from unsanitary con-
ditions strongly suggests that a large proportion of these
antimicrobials were used for prophylaxis rather than for
therapeutics (Godoy et al., 2008; Kibenge et al., 2009;
Asche et al., 2010; Ibieta et al., 2011; Millanao et al.,
2011). In Chile at least, aquaculture rather than human
and other veterinary medical activities would seem to be
the most important source for passage of antimicrobials
into the aquatic environment where they select for
antimicrobial-resistant bacteria (Asche et al., 2010; Ibieta
et al., 2011; Millanao et al., 2011). In view of the continu-
ing worldwide increase in aquaculture, the effects of anti-
microbial use in this industry raise questions that deserve
careful monitoring (FAO, 2010).

The emergence of antimicrobial-resistant bacteria may
even be greater than that which has been detected since
most studies have been limited to demonstrating this
resistance in culturable bacteria, which constitute only a
small proportion of the total bacteria present in the aquatic
environment (Bissett et al., 2006). There is a lack of infor-
mation regarding microbial communities that change in
numbers or even disappear in aquatic environments
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because of their susceptibility to antimicrobials and the
effect this phenomenon may have on metabolic activities
of microbial communities and the health of the sediment
(Bissett et al., 2006; Edlund et al., 2006; Ma et al., 2006;
Gonçalves Ferreira et al., 2007). Deposition of food
pellets and organic matter lacking antimicrobials onto
sediments near aquaculture sites and in the laboratory
have been shown to impact sediment microbial biodiver-
sity and have been suggested to increase the fraction of
antimicrobial-resistant bacteria present in them (Smith
et al., 1994; Kapetanaki et al., 1995; Nogales et al., 2011;
Pitkanen et al., 2011; Tamminen et al., 2011a). However,
these studies did not rule out the presence of other anti-
microbial compounds in the food or in the sediments such
as heavy metals (Zn, Cu, Hg), disinfectants, and organic
antibacterial compounds, any or all of which might be
responsible for these results (Smith et al., 1994;
Kapetanaki et al., 1995; Akinbowale et al., 2007; Tacon
and Metian, 2008; Pitkanen et al., 2011; Tamminen et al.,
2011a). Although the observed increase in antimicrobial-
resistant bacteria could be explained by linkage of genes
involved in metabolism of organic matter with antimicro-
bial resistance genes, the preponderance of evidence to
date suggests that antimicrobial residues present in the
environment where aquaculture takes place are the most
relevant selective pressure to account for the increased
fraction of antimicrobial-resistant bacteria there.

Mechanisms of bacterial selection

The genomes of aquatic bacteria are highly diverse and
contain genetic elements and genes involved in the gen-
eration and dissemination of antimicrobial resistance
genes similar to those previously characterized in terres-
trial bacteria (Venter et al., 2004; Baker-Austin et al.,
2009; Biers et al., 2009; Sobecky and Hazen, 2009;
Hazen et al., 2010; McDaniel et al., 2010; Wiedenbeck
and Cohan, 2011). The total of all mobile genetic elements
(MGE) of the genome of aquatic bacteria, the mobilome,
include water current-transported naked DNA (Stewart
and Sinigalliano, 1990; Sobecky and Hazen, 2009; Fondi
and Fani, 2010; Taylor et al., 2011; Domingues et al.,
2012), insertion sequences (Toleman and Walsh, 2011),
insertion sequence elements with common regions
(ISCR) (Toleman et al., 2006; Toleman and Walsh, 2010;
Xia et al., 2010), integrons mobilized by plasmids, trans-
posons and integrative and conjugative elements (ICE or
SXT) (Rosser and Young, 1999; L’Abee-Lund and Sørum,
2001; Schmidt et al., 2001b; Burrus et al., 2006; Koenig
et al., 2008; Osorio et al., 2008; Wozniak et al., 2009;
Cambray et al., 2010; Daccord et al., 2010; Rosewarne
et al., 2010; Wozniak and Waldor, 2010), genomic islands
(Boyd et al., 2002; 2008; Juhas et al., 2009; Daccord
et al., 2010; Le Hello et al., 2011), transposons and con-

jugative transposons (Rhodes et al., 2000; Knapp et al.,
2008), conjugative and mobilizable plasmids (Baya et al.,
1986; Aoki et al., 1987; Kim and Aoki, 1996b; Sobecky
et al., 1997; Schmidt et al., 2001b; Furushita et al., 2003;
Kim et al., 2004; Rhodes et al., 2004; Gordon et al., 2007;
Cattoir et al., 2008; Guglielmetti et al., 2009; Sobecky and
Hazen, 2009; Erauso et al., 2011; Ma et al., 2012), and
bacteriophages, including phage-like elements desig-
nated gene transfer agents (GTA) (Suttle, 2007;
Colomer-Lluch et al., 2011; Lang et al., 2012). GTA
mediate HGT between heterologous bacteria and appear
to have an important role in this process in marine bacte-
rial communities (Lang et al., 2012). It is not surprising
that introduction of large amounts of antimicrobials into
the aquatic environment is rapidly followed by emergence
of significant numbers of multiple-resistant bacteria since
antimicrobial resistance genes would enhance fitness for
growth in sediments containing antimicrobials (Capone
et al., 1996; Kerry et al., 1996; Sobecky et al., 1997;
Guardabassi et al., 2000; Schmidt et al., 2000; Furushita
et al., 2003; Groh et al., 2007; Seyfried et al., 2010).
Moreover, contrary to well-documented reports showing
that some antimicrobial resistance mechanisms have a
fitness cost, the presence of the quinolone resistance
gene qnrA in some aquatic bacteria and other antimicro-
bial resistance genes in Shewanella may enhance fitness
in the absence of antimicrobials (Groh et al., 2007;
Michon et al., 2011).

Conditions in aquatic environments that favour HGT
include biofilms of aquatic bacteria on the epilithon (par-
ticulate organic matter coating benthic ecosystems), on
clays and sand of sediments, and on aquacultural struc-
tures, coupled with the large concentrations of bacteri-
ophages and GTAs in seawater, also favour HGT and
dissemination of antimicrobial resistance (Hill et al., 1992;
Sobecky et al., 1997; Bushman, 2002; Venter et al., 2004;
Furushita and Shiba, 2007; Suttle, 2007; McDaniel et al.,
2010; Marshall et al., 2011; Sundell and Wiklund, 2011;
Taylor et al., 2011; Lang et al., 2012; Lupo et al., 2012;
Toussaint and Chandler, 2012). Antimicrobials can poten-
tially also stimulate HGT mediated by naked DNA gener-
ated by bacteriophage lysis, as well as that mediated by
plasmids in the aquatic environment and in the intestines
of fish and terrestrial animals (Stewart and Sinigalliano,
1990; Beaber et al., 2004; Frost et al., 2005; Aarestrup
et al., 2008; Allen et al., 2011; Domingues et al., 2012;
Looft et al., 2012). In addition, aquatic bacteriophages
can contain antimicrobial resistance genes that may be
expressed upon infection of bacteria (Colomer-Lluch
et al., 2011). Several aquatic bacteria such as Vibrio spp.
are naturally competent for DNA uptake, thus also
increasing the opportunities for transformation to occur in
the aquatic environment (Stewart and Sinigalliano, 1990;
Meibom et al., 2005; Baharoglu et al., 2012).
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Bacteria from aquatic and terrestrial environments
share similar antimicrobial genetic determinants (Table 2,
Fig. 3) (Baquero et al., 2008; Sobecky and Hazen, 2009;
Marshall and Levy, 2011; Taylor et al., 2011; Buschmann
et al., 2012), and HGT and recombination of these deter-
minants between different bacterial species can be
stimulated by residual and subinhibitory antimicrobial con-
centrations of tetracyclines and quinolones in sediments
(Kruse and Sørum, 1994; Aarestrup et al., 2000; Beaber
et al., 2004; Hastings et al., 2004; Davies, 2009;
Buschmann et al., 2012). Bacteria in aquatic environ-
ments may in fact be the source of genetic elements of the
mobilome such as SXT, ISCR, and integrons as well as
previously unknown antimicrobial resistance determi-
nants (Miranda et al., 2003; Burrus et al., 2006; Laroche
et al., 2009; Daccord et al., 2010; Kristiansson et al.,
2011; Xu et al., 2011a,b; Ma et al., 2012). For example,
tetG (Table 2), an independently evolved tetracycline
resistance determinant, was first discovered in aquatic
bacteria (Aoki et al., 1987; Zhao and Aoki, 1992; Angulo,
1999). Several phenotypically tetracycline-resistant bac-
teria isolated from aquaculture sites also contained
genetic determinants that could not be amplified by PCR
with primers corresponding to the known tetracycline
resistance determinants indicating that they carried
unknown tetracycline resistance genes (Miranda et al.,
2003).

A number of antimicrobial resistance genes appear to
have been first detected in aquatic bacteria before being
detected and disseminating among human and animal
pathogens. These include some of the emerging plasmid-
mediated quinolone resistance (PMQR) genes found in
aquatic Vibrio, Shewanella and Aeromonas (Table 2)
(Poirel et al., 2005; 2012; Cattoir et al., 2007; 2008; Xia
et al., 2010); new b-lactamase genes from Photobacte-
rium damselae (Table 2) (Morii, 2004) and Oceanobacillus
iheyensis (Toth et al., 2010); a novel fosfomycin resist-
ance determinant isolated from the aquatic environment
(Xu et al., 2011b); the widely disseminated emerging floR
gene of human pathogens (Kim and Aoki, 1996a; Angulo,
1999; Arcangioli et al., 1999; 2000; Bolton et al., 1999;
Cloeckaert et al., 2000; 2001; Miranda and Rojas, 2007;
Gordon et al., 2008; Smith, 2008a,b; Cabello, 2009;
Welch et al., 2009; Fernández-Alarcón et al., 2010; Hall,
2010); and the chloramphenicol resistance genes catII,
catB9 and catB2 from aquatic Photobacterium, Vibrio and
Shewanella respectively (Roberts and Schwarz, 2009;
Roberts et al., 2012). Moreover, antimicrobial resistance
gene variants including those for b-lactams, aminoglyco-
sides, tetracyclines, macrolides and heavy metals have
been detected in the genome of the salmon pathogen
Renibacteriun salmoninarum and the aquatic opportunis-
tic human pathogen Stenotrophomonas maltophilia sug-
gesting that these aquatic bacteria may be repositories for

antimicrobial resistance genes (Crossman et al., 2008;
Wiens et al., 2008).

Selection of antimicrobial-resistant bacteria in the
aquatic environment can also occur by selection of spon-
taneous single mutants since water, sediments and
piscine intestines all contain sufficiently large concentra-
tions of bacteria to have detectable numbers of sponta-
neously arising antimicrobial-resistant mutants (Capone
et al., 1996; Levy and Marshall, 2004; Alekshun and
Levy, 2007; Navarrete et al., 2008; Navarro et al., 2008;
Nikaido, 2009). Moreover, the high density of fish and
shellfish in aquacultural enclosures increases the oppor-
tunities for this selection to occur (Woo et al., 2002;
Beveridge, 2004; Austin and Austin, 2012). Mutants and
bacteria tolerant to antimicrobials can clearly be selected
by inhibitory and subinhibitory concentrations of antimi-
crobials (Miller et al., 2004; Dorr et al., 2009; Kohanski
et al., 2010). Though this mechanism may not be as
effective for selection and dissemination of antimicrobial-
resistant bacteria as selection of bacteria containing
MGEs with multiple antimicrobial resistance genes
(Akinbowale et al., 2007; Davies, 2009; Davies and
Davies, 2010), it may be relevant since persistent
residual and subinhibitory concentrations of antimicrobi-
als in sediments can trigger the SOS system (a bacterial
reparative response to DNA damage). This system can
increase the rate of mutagenesis by several mechanisms
including generation of oxygen radicals (Kohanski et al.,
2007; 2010; Dorr et al., 2009; Blazquez et al., 2012).
Subinhibitory concentrations of antimicrobials can also
select resistant bacteria by non-SOS-mediated mecha-
nisms such as DNA recombination, amplification, and
selection for hypermutator strains (López et al., 2007;
Sun et al., 2009; Blazquez et al., 2012). These mecha-
nisms may be especially relevant with quinolones
located in sediments since these antibacterial agents are
only slowly degraded and are well-known inducers of
mutagenesis and antimicrobial tolerance (Dorr et al.,
2009; Lai and Lin, 2009; Kohanski et al., 2010; Blazquez
et al., 2012).

Antimicrobial-resistant mutants selected in fish intesti-
nal tracts and in the environment can also have their
mutated genes captured by integrons, genetic elements
with diverse antimicrobial resistance determinant cas-
settes that can be mobilized by transposons and plasmids
to generate new permutations of resistance genes
(Rowe-Magnus and Mazel, 1999; L’Abee-Lund and
Sørum, 2001; Mazel, 2006; Boucher et al., 2007; Jacobs
and Chenia, 2007; Gillings et al., 2008; Laroche et al.,
2009; Xia et al., 2010; Stalder et al., 2012). The frequent
presence of integrons in aquatic bacteria, especially
in bacteria from sediments impacted by anthro-
pogenic activities such as aquaculture, may suggest
an aquatic origin (Rosser and Young, 1999; Schmidt
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et al., 2001a; Rosewarne et al., 2010; Gaze et al., 2011).
Stimulation of the SOS stress regulon by antimicrobials
such as quinolones and b-lactamases can not only
stimulate HGT by transformation and conjugation but
can also affect integron recombination and plasticity.
This latter is a result of the triggering of integrase activity
with its resultant antimicrobial resistance cassete uptake
and expression (Baharoglu et al., 2010; 2012; Cambray
et al., 2011). Subinhibitory concentrations of antimicrobi-
als from aquacultural activities could thus, besides
selecting and inducing antimicrobial resistance in sedi-
ments and water, also mediate antimicrobial resistance
genetic plasticity in vivo in the intestine of aquaculture
species (Guerin et al., 2009; Baharoglu et al., 2010;
Baharoglu and Mazel, 2011; Blazquez et al., 2012;
Hocquet et al., 2012).

It has been suggested that antimicrobial resistance
genes and antimicrobial-resistant bacteria arrive there in
fish food and in exogenous contaminating effluents
rather than being generated from local sources in the
water and sediments at aquaculture sites (Smith et al.,
1994; Kapetanaki et al., 1995; Kerry et al., 1995; Smith,
2008b; Martinez, 2009b; 2012; Pitkanen et al., 2011).
This and the fact that fish food may increase antimicro-
bial resistance (Smith et al., 1994; Kapetanaki et al.,
1995; Kerry et al., 1995; Martinez, 2009b; Pitkanen
et al., 2011) are plausible hypotheses that deserve inves-
tigation. However, persistence and increase of these
genes and these bacteria in aquatic environments will be
sustained by the presence of antimicrobials no matter
how they arrive (Akinbowale et al., 2007; Davies, 2009;
Nikaido, 2009; Davies and Davies, 2010). The modular

nature of the MGE involved in antimicrobial resistance in
aquatic bacteria also facilitates selection of multiple anti-
microbial resistances by a single antimicrobial compound
and by other antimicrobial compounds used in aquacul-
ture such as heavy metals and disinfectants (Herwig and
Gray, 1997; Lawrence, 2000; Stepanauskas et al., 2006;
Akinbowale et al., 2007; Alekshun and Levy, 2007;
Davies, 2009; Seiler and Berendonk, 2012).

Antimicrobial resistance genes have been demon-
strated in ancient bacterial DNA extracted from terrestrial
permafrost and in collections of bacteria preceding intro-
duction of antimicrobials (Datta and Hughes, 1983;
Hughes and Datta, 1983; D’Costa et al., 2011). While the
effects of aquacultural antimicrobial use on aquatic sedi-
ments are most likely restricted to selecting those bacteria
able to survive in their presence, the increase of
antimicrobial-resistant bacteria that this produces and the
particularities of the aquatic environment at aquaculture
sites may provide new avenues for the generation and
emergence of previously unknown and undescribed
mechanisms for this selection as well as of new permu-
tations of antimicrobial resistance genes as those gener-
ated by integron plasticity (Levesque et al., 1995;
Sobecky et al., 1997; Sørum, 2006; Baquero et al., 2008;
Sobecky and Hazen, 2009; Baharoglu et al., 2010;
Cambray et al., 2010; Taylor et al., 2011; Hocquet et al.,
2012). In aquaculture and the aquatic environment, anti-
microbials clearly appear to display their hormetic proper-
ties: higher concentrations of antimicrobials select for
resistant bacteria, while subinhibitory concentrations of
their residues might stimulate HGT and mutagenesis
(Linares et al., 2006).

(A) (B) (C) (D)

Fig. 3. Sharing of tetracycline and plasmid mediated quinolone resistance determinant aac(6�)-Ib-cr between marine bacteria and four Escherichia
coli clinical isolates (isolates 1–4) from human urinary tract infections in Region X, Chile. Amplicons of tetB, tetK, tetM and aac(6�)-Ib-cr were
detected by PCR as described (Ng et al., 2001; Miranda et al., 2003; Robicsek et al., 2006). For all panels, lane 1, molecular weight standards;
lane 2, positive control; lane 3, negative control (E. coli DH5a); lane 4, marine bacterial isolate; lane 5, clinical isolate. A. tetB. Lane 2, E. coli DH5a
pETtetB1; lane 4, Pseudoalteromonas sp.; lane 5, E. coli isolate 1. B. tetK. Lane 2, S. aureus pT181; lane 4, Pseudoalteromonas sp.; lane 5, E. coli
isolate 2. C. tetM. Lane 2, E. coli DH10B pJFP76; lane 4, Shewanella sp.; lane 5, E. coli isolate 3. D. aac(6�)-Ib-cr. Lane 2, E. coli J53 pMG298;
lane 4, Rhodoccus sp.; lane 5, E. coli isolate 4.
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Effects of aquacultural use of antimicrobials on
animal and human health

Animal health

The most obvious detrimental effect of extensive use of
antimicrobials in aquaculture is selection of fish and shell-
fish pathogens resistant to multiple antimicrobials which in
turn produce difficult or impossible to treat epizootics
(L’Abee-Lund and Sørum, 2002; Murray and Peeler,
2005; Toranzo et al., 2005; Asche et al., 2010; Barton and
Floysand, 2010; Pulkkinen et al., 2010; Ibieta et al., 2011).
The clinical problems generated in veterinary and human
medicine by antimicrobial-resistant bacteria are well
reviewed (Aarestrup et al., 2000; 2008; Anderson et al.,
2003; Angulo et al., 2004; Molbak, 2006; Sapkota et al.,
2008; Le Hello et al., 2011; Marshall and Levy, 2011), and
fish and shellfish pathogens resistant to multiple antimi-
crobials used in aquaculture have been described (Austin,
1985; Arthur et al., 2000; Sørum, 2000; 2006; Armstrong
et al., 2005; Toranzo et al., 2005). These include Aerom-
onas salmonicida, A. hydrophila, A. caviae, A. sobria,
E. ictaluri, E. tarda, P. damselae piscicida, Vibrio anguil-
larum, V. salmonicida, V. ordalii, Flavobacterium psy-
chrophilum, Pseudomonas fluorescens, Streptococcus
iniae, Renibacterium salmonicarum, Yersinia ruckeri and
Piscirickettsia salmonis (Table 2). In most of them, antimi-
crobial resistance is mediated by plasmids and MGE,
often conjugative, and with potential for HGT (Austin,
1985; Arthur et al., 2000; Rhodes et al., 2000; Sørum,
2000; 2008; Schmidt et al., 2001a; Armstrong et al., 2005;
Casas et al., 2005; Toranzo et al., 2005; Erauso et al.,
2011). Some of these pathogens, e.g. Edwarsiella,

Aeromonas, and Streptococcus, can infect humans and
generate antimicrobial-resistant zoonotic infections
(Table 3) (Novotny et al., 2004; Toranzo et al., 2005;
Lowry and Smith, 2007; Iwamoto et al., 2010; Boylan,
2011; Naviner et al., 2011; Austin and Austin, 2012; Leung
et al., 2012). Kluyvera spp. and S. maltophilia are addi-
tional aquatic bacteria related to fish that are emerging as
opportunistic human pathogens (Sarria et al., 2001;
Looney et al., 2009).

The worldwide occurrence of IncU, pRAS3, pRAS1 and
pAr-32 plasmids in Aeromonas illustrates the relevance of
the widespread dissemination of antimicrobial resistance
genes coded by MGE in fish and shellfish pathogens
(L’Abee-Lund and Sørum, 2002; Sørum et al., 2003).
Similarly, PMQR genes selected in aquatic bacteria as a
result of aquacultural antimicrobial use could hypotheti-
cally pass by HGT to fish pathogens such as F. psy-
chrophilum, A. salmonicida and Y. ruckeri expressing a
mutated GyrA (Oppegaard and Sørum, 1994; Izumi and
Aranishi, 2004; Shah et al., 2012a,b). Such an occurrence
could increase quinolone resistance and increase qui-
nolone concentrations required to prevent chromosomal
mutations to these antimicrobials, and as a result compli-
cate treatment of infections caused by these pathogens
(Oppegaard and Sørum, 1994; Izumi and Aranishi, 2004;
Strahilevitz et al., 2009; Shah et al., 2012a,b).

While selection of antimicrobial-resistant bacteria in
normal intestinal and other flora of fish as a result of
aquacultural use of antimicrobials has not been exten-
sively investigated, it is reasonable to suppose that anti-
microbial resistance determinants present in normal
piscine flora could be the source of resistance

Table 3. Some fish-associated bacterial zoonoses.a,b,c,d,e,f

Mechanism of transmission Disease

Contact-borne
Mycobacterium marinum, M. fortuitum, M. ulcerans Fish handler disease, tank granuloma
Streptococcus iniae Cellulitis, systemic infections
Aeromonas hydrophila, A. sobria, A. caviae Skin wound infections, systemic infections
Vibrio damselae, V. vulnificus, V. mimicus, V. fluvialis, V. alginolyticus Skin and wound infections, systemic infections
Edwardsiella tarda Cellulitis, gastroenteritis, bacteraemia
Erysipelothrix rhusopathiae Skin infections, systemic infections
Stenotrophomonas maltophilia (?) Pneumonia, systemic infections
Kluyvera (?) Gastroenteritis, bacteraemia

Food-borne
Vibrio parahaemolyticus, V. cholerae Diarrhoea
Aeromonas hydrophila Diarrhoea, systemic infections
Salmonella Diarrhoea, systemic infections
Listeria monocytogenes Diarrhoea, systemic infections
Clostridium botulinicum, C. perfringens Botulism, diarrhoea
Plesiomonas shigelloides Diarrhoea

a. Sarria et al. (2001).
b. Looney et al. (2009).
c. Lowry and Smith (2007).
d. Iwamoto et al. (2010).
e. Boylan (2011).
f. Austin and Austin (2012).
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determinants in piscine pathogens analogous to what has
been shown to occur in terrestrial animals and human
beings (Salyers and Shoemaker, 2006; Navarrete et al.,
2008; Marshall et al., 2009; Martinez et al., 2009; Nayak,
2010; Looft et al., 2012). Antimicrobial resistance deter-
minants in piscine pathogens could also be acquired from
environmental antimicrobial-resistant bacteria that have
been selected by residual antimicrobials in water and
sediments (Kruse and Sørum, 1994; Davison, 1999;
Alonso et al., 2001; Fricke et al., 2008; Cantón, 2009;
Martinez, 2009a; 2012; Allen et al., 2010; Fondi and Fani,
2010; Colomer-Lluch et al., 2011; Stokes and Gillings,
2011; Dantas and Sommer, 2012). Both of these proc-
esses can be stimulated by the presence of antimicrobials
in fish tissues and in the environment since (as previously
mentioned) many of these antimicrobials are able to fuel
HGT and mutagenesis (Aarestrup et al., 2000; Beaber
et al., 2004; Couce and Blazquez, 2009; Kohanski et al.,
2010; Allen et al., 2011; White and McDermott, 2011).
Moreover, alterations produced by antimicrobials in the
sediments and in the normal flora in the piscine intestinal
tract may favour infection by pathogens (Navarrete et al.,
2008; Nayak, 2010). Excessive and prophylactic use of
antimicrobials in aquacultural settings can thus be coun-
terproductive by selecting and favouring untreatable
infections with piscine and shellfish pathogens resistant to
multiple antimicrobials, and result in the collapse of these
activities (Lin, 1989; Holmström et al., 2003; León-Muñoz
et al., 2007; Asche et al., 2010; Barton and Floysand,
2010; Ibieta et al., 2011; Millanao et al., 2011).

Salmon aquaculture requires growth of this anadro-
mous species in both fresh and salt water. This results in
differences in normal flora and pathogens in fish and the
environment in these two locations, differences which in
turn affect the outcome of the selective effects of antimi-
crobials (Woo et al., 2002; Beveridge, 2004; Austin and
Austin, 2012). For example, antimicrobials used in fresh-
water will select for antimicrobial resistance among the
freshwater pathogens F. psychrophilum and A. salmonic-
ida while those used in the marine stages will select
among marine pathogens such as Vibrio spp. and P. sal-
monis (Woo et al., 2002; Beveridge, 2004; Austin and
Austin, 2012).

In Chile, the augmented use of antimicrobials that
accompanied increases in salmon production coincided
with surges in fish mortalities and emergence of new and
resistant bacterial pathogens (Asche et al., 2010; Ibieta
et al., 2011; Millanao et al., 2011). It was in this period that
S. phocae, Rhodococcus qingshengi, F. chilensis and
F. araucanum emerged as potential new salmon patho-
gens (Valdés et al., 2009; Avendaño-Herrera et al., 2011;
Kämpfer et al., 2012). Moreover, approximately 90% of
isolates of F. psychrophilum, the cause of cold water
disease in salmon and trout, were resistant to the three

most commonly used antimicrobials (tetracyclines, flor-
fenicol, oxolinic acid) making this disease practically
untreatable with them (Henríquez-Núnez et al., 2012). In
other regions of the world, pathogens of aquacultured fish
such as Edwardsiella ictaluri and E. tarda also display
high levels of antimicrobial resistance (Dung et al., 2008;
Nadirah et al., 2012). In Taiwan, the collapse of shrimp
aquaculture during the late 1980s resulted from the emer-
gence of multiple-resistant pathogens selected by the
injudicious use of antimicrobials (Lin, 1989; Kautsky et al.,
2000). Preliminary observations suggest that the fre-
quency of detection of antimicrobial resistance genes in
aquaculturally-related aquatic bacteria can be correlated
with the amounts of antimicrobials used in this activity in
Norway and Chile (Shah, 2012).

Human health

There are increasing signs that antimicrobial use in aqua-
culture may have a long-term and permanent potential to
select for antimicrobial-resistant bacteria in the aquatic
environment at multiple levels (DePaola et al., 1995;
Capone et al., 1996; Schmidt et al., 2001a; Holmström
et al., 2003; Miranda et al., 2003; Sørum, 2006; Miranda
and Rojas, 2007; Seyfried et al., 2010). This may be par-
ticularly relevant to human health in those countries
where aquacultural use is heavy, prophylactic and uncon-
trolled, since bacteria and archaea in the aquatic environ-
ment share a large assortment of MGE and antimicrobial
resistance genes with a wide range of terrestrial bacteria
(Furushita et al., 2003; Hastings et al., 2004; Furushita
and Shiba, 2007; Sobecky and Hazen, 2009; McDaniel
et al., 2010; Erauso et al., 2011; Millanao et al., 2011;
Taylor et al., 2011; Buschmann et al., 2012). Indeed, there
is strong laboratory and field evidence for readily detect-
able frequencies of HGT between bacteria in the aquatic
environment and human pathogens, as would be
expected of genetic exchange communities linked by
HGT in spite of the oligotrophy of the aquatic environ-
ments (Sandaa et al., 1992; Goodman et al., 1993;
L’Abee-Lund and Sørum, 2002; Furushita and Shiba,
2007; Baquero et al., 2008; Guglielmetti et al., 2009;
Taylor et al., 2011; Lupo et al., 2012). As a result of HGT,
these new genetic entities may be incorporated into the
pangenome of terrestrial bacteria including human patho-
gens, linking the aquatic and terrestrial resistomes and
complicating the treatment of human infections (Sandaa
et al., 1992; Furushita et al., 2003; Medini et al., 2005;
Sørum, 2006; Sobecky and Hazen, 2009; Martinez,
2009a; Fondi and Fani, 2010; Erauso et al., 2011;
Forsberg et al., 2012). The power of HGT to generate
genetic diversity from aquatic bacteria is demonstrated by
the ability of human intestinal Bacteroides to acquire
genes needed for degradation of algal polysaccharides
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from aquatic bacteria (Hehemann et al., 2010; 2012). This
gene flow may not be directly from aquatic bacteria to
human pathogens but may involve intermediaries such as
other environmental bacteria or commensal flora of
animals and humans (Roberts, 2009; Skippington and
Ragan, 2011). This complex ecological web makes track-
ing the flow of antimicrobial resistant genes and their
history difficult but not impossible (Roberts, 2009;
Skippington and Ragan, 2011). While genetic flow
between aquatic and terrestrial bacteria might well be
restricted by molecular mechanisms against DNA transfer
(Thomas and Nielsen, 2005; Martinez et al., 2009;
Skippington and Ragan, 2011; Wiedenbeck and Cohan,
2011), it still might frequently occur because the strong
selective pressure in aquatic sediments contaminated
with antimicrobials could overcome these restrictive
mechanisms (Hastings et al., 2004; Thomas and Nielsen,
2005; Aminov and Mackie, 2007). The potential bidirec-
tional flow of antimicrobial resistance genes between
aquatic bacteria and human pathogens increases the
danger to human health if this flow results in high risk
clones that can disseminate widely among human popu-
lations (Woodford et al., 2011).

An example of such genetic flow is the occurrence of
similar IncU incompatibility group plasmids containing
Tn1721 TetA determinants and integron1 in piscine and
human pathogenic Aeromonas and in Escherichia coli
isolated in hospitalized patients (Rhodes et al., 2000;
2004; Sørum et al., 2003). Sharing of the quinolone
resistance genes qnrA, qnrS and qnrVC by aquatic
Shewanella, Photobacterium, Aeromonas and Vibrio
(Table 2) with a large array of Gram-negative human
pathogens (e.g. E. coli and Klebsiella) is another example
of such gene flows (Poirel et al., 2005; 2012; Saga et al.,
2005; Cattoir et al., 2007; 2008; Martínez-Martínez et al.,
2008; Strahilevitz et al., 2009; Xia et al., 2010; Hernández
et al., 2011). We ourselves have found the PMQR gene
aac(6�)-Ib-cr, commonly found in clinical isolates, in
marine bacteria such as Rhodococcus spp. (Fig. 3)
(Robicsek et al., 2006; Buschmann et al., 2012; Poirel
et al., 2012). The current dissemination of CTX-M-type
extended-spectrum b-lactamases among enteric patho-
gens may be a third example of human pathogens prob-
ably acquiring antimicrobial resistance genes from
aquatic bacteria (Rodriguez et al., 2004; Cantón and
Coque, 2006; Cantón et al., 2012). In this case, it has
been postulated that the CTX-M gene was acquired from
Kluyvera, a genus encountered in the aquatic environ-
ment in fish intestines and an opportunistic human patho-
gen (Tables 2 and 3) (Decousser et al., 2001; Sarria et al.,
2001; Humeniuk et al., 2002; Rodriguez et al., 2004;
Cantón and Coque, 2006; Navarrete et al., 2008;
Rossolini et al., 2008; Cantón et al., 2012). Plasmids of
the IncA/C incompatibility group harbouring a variety of

antimicrobial resistance genetic elements and metal
resistance genes have been recently found to be shared
by fish pathogens such as Y. ruckeri, Aeromonas, Edwar-
siella (Table 2) and human pathogens such as Y. pestis,
Salmonella and V. cholerae (Welch et al., 2007; 2009;
McIntosh et al., 2008; Pan et al., 2008; Fricke et al., 2009;
Call et al., 2010; Douard et al., 2010; Toleman and Walsh,
2010). It has also been postulated that bacteria such as
Aeromonas exposed to antimicrobials in an aquatic envi-
ronment may have facilitated the transfer of the IncA/C
plasmids between bacteria of different environments to
human pathogens (McIntosh et al., 2008; Fricke et al.,
2009; Parker and Shaw, 2011). A similar role could be
played by Edwardsiella and Vibrio (Pan et al., 2008;
Welch et al., 2009; Leung et al., 2012).

The unrestricted transmission of STX/R391 (an ICE
able to harbour a multiple antimicrobial resistance inte-
gron and to mobilize genomic islands) between aquatic
V. cholerae, the opportunistic human pathogens Provi-
dencia and Proteus, the fish pathogen, P. damselae, and
the environmental aquatic, Shewanella, underscores the
potential for HGT between bacteria from the aquatic envi-
ronment and human pathogens (Burrus et al., 2006;
Osorio et al., 2008; Wozniak et al., 2009; Daccord et al.,
2010; Wozniak and Waldor, 2010; Toleman and Walsh,
2011; Rodriguez-Blanco et al., 2012). ICE elements are
genetically related to the IncA/C plasmids with the poten-
tial of genetic recombination and interactions between
them that facilitate their host range and dissemination
(Burrus et al., 2006; Osorio et al., 2008; Wozniak et al.,
2009; Daccord et al., 2010; Wozniak and Waldor, 2010;
Guglielmini et al., 2011; Toleman and Walsh, 2011).
Ready distribution and transfer of antimicrobial resistance
genes between bacteria in the aquatic environment
and terrestrial bacteria and human pathogens is further
demonstrated by the sharing of tetG and floR resistance
determinants of an antimicrobial-resistance Salmonella
genomic island 1 (SGI1) between P. damselae piscicida
and epidemic S. enterica serovar Typhimurium DT104,
fish-transmitted serovar Paratyphi B, serovar Agona and
serovar Albany (Zhao and Aoki, 1992; Kim and Aoki,
1996a; Angulo, 1999; Arcangioli et al., 1999; 2000; Bolton
et al., 1999; Briggs and Fratamico, 1999; Cloeckaert
et al., 2000; 2001; Boyd et al., 2002; 2008; Meunier et al.,
2002; Doublet et al., 2003; Smith, 2008a,b). It is also
demonstrated by the suspected potential passage of tetC
tetracycline island mediated by insertion element IScs605
(an insertion element also present in Helicobacter pylori)
(Lau et al., 2008; Roberts, 2009; Roberts and Schwarz,
2009; Sandoz and Rockey, 2010) from aquatic A. salmo-
nicida or the opportunistic piscine-originated Laribacter
hongkongensis to Chlamydia suis, a pig pathogen (Lau
et al., 2008; Roberts, 2009; Roberts and Schwarz, 2009;
Sandoz and Rockey, 2010; Roberts et al., 2012), and by
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the assumed origin in aquaculture of SGI1 variant K in
internationally disseminated S. enterica serovar Kentucky
ST198 resistant to ciprofloxacin (Le Hello et al., 2011).

The wide spectrum of potential interactions between
these antimicrobial resistance MGEs of aquatic and ter-
restrial bacteria is further illustrated by a recent report that
SGI1 can be mobilized between different bacteria by anti-
microbial resistance plasmids of incompatibility group
IncA/C found in piscine (Aeromonas, Photobacterium)
and human pathogens (Salmonella, Proteus, Vibrio)
(Douard et al., 2010). Undoubtedly, the possibilities of
HGT between bacteria of the aquatic environment and
human pathogens are increased in settings where injudi-
cious use of antimicrobials in aquaculture facilitates
passage of large amounts of antimicrobials into the
aquatic environment (Cabello, 2006; Asche et al., 2010;
Burridge et al., 2010; Millanao et al., 2011; Buschmann
et al., 2012). There the antimicrobials can select for
antimicrobial-resistant bacteria increasing their numbers,
stimulate mutagenesis and HGT, and facilitate dissemina-
tion of antimicrobial resistance genes from the aquatic
resistome to the terrestrial one (Baya et al., 1986;
Baquero et al., 2008; Cantón, 2009; Couce and Blazquez,
2009; Martinez, 2009a; Forsberg et al., 2012; Lupo et al.,
2012; Tello et al., 2012). The use of antimicrobials in
aquaculture may also negatively influence human health
in areas where the marine aquatic environment is the
source of epidemics of shellfish-borne V. parahaemolyti-
cus (Cabello et al., 2007; García et al., 2013). Selecting
for antimicrobial-resistant Vibrios in the environment and
facilitating the transfer and mutagenesis of its chromo-
somal qnr-like loci and alternative antimicrobial resistance
genes to other pathogens (Saga et al., 2005; Cabello
et al., 2007). Contamination of the aquatic environment
with human pathogens, as is common in lakes, rivers and
the marine litoral in developing countries, will further facili-
tate genetic flow between aquatic bacteria and these
pathogens (Silva et al., 1987; Miranda and Zemelman,
2001; Baquero et al., 2008; Luna et al., 2010; Ribeiro
et al., 2010; Tello et al., 2012). The aquatic environment at
aquacultural sites, as suggested by Sørum and Baquero,
may constitute a bona fide reactor for facilitating and
accelerating evolution towards antimicrobial resistance of
a wide range of aquatic and terrestrial bacteria including
human pathogens (Sørum, 2006; Baquero et al., 2008). In
the case of salmonid aquaculture, transport of juvenile
fish from hatcheries and lakes to the marine environment
will also play a role in disseminating antimicrobial resistant
bacteria and genes between these two aquatic environ-
ments (Sørum, 2006; Miranda, 2012).

In addition to selection and dissemination of
antimicrobial-resistant bacteria, excessive use of antimi-
crobials in aquaculture can potentially have other detri-
mental impacts on human health (Austin, 1985; Burka

et al., 1997; Arthur et al., 2000; Haya et al., 2001;
Cabello, 2006; Hastein et al., 2006; Sarmah et al., 2006;
Sapkota et al., 2008; Heuer et al., 2009; Rodgers and
Furones, 2009; Burridge et al., 2010; Abraham, 2011;
Naviner et al., 2011). Fish products for human consump-
tion can become contaminated with antimicrobial residues
at doses higher than Maximum Residue Limits (Silva
et al., 1987; Cabello, 2006; Silley, 2007; Silbergeld et al.,
2008; Nogales et al., 2011). When such products are
eaten, they can potentially alter the human normal intes-
tinal flora, select for antimicrobial-resistant bacteria, and
aid infection with human pathogens while further facilitat-
ing HGT of antimicrobial resistance (Cabello, 2006;
Salyers and Shoemaker, 2006; Silley, 2007; Nisha, 2008;
Sapkota et al., 2008; Silbergeld et al., 2008). Passage of
antimicrobials to humans in fish meat may be more
common than supposed since regulatory agencies fre-
quently detect antimicrobial residues in fish for human
consumption despite the low proportion of aquacultured
fish tested for the presence of these drugs (Arthur et al.,
2000; Sapkota et al., 2008; Silbergeld et al., 2008; Tacon
and Metian, 2008; Rodgers and Furones, 2009; Burridge
et al., 2010; Love et al., 2011). Ingestion of free-ranging
(wild) fish, shellfish and crustaceans from areas surround-
ing aquaculture sites can also result in passage of anti-
microbials used in aquaculture to the human intestine
since antimicrobials can reach other animals near these
sites and remain in their tissues for some period of time
(Björklund et al., 1990; Sarmah et al., 2006; Fortt et al.,
2007; Sapkota et al., 2008). Similarly, antimicrobial-
resistant bacteria selected in aquaculture sites can con-
taminate marketed aquacultural produce (Sarmah et al.,
2006; Naviner et al., 2011; Castillo Neyra et al., 2012;
Nawaz et al., 2012). In addition, there is the reasonable
possibility that workers in food mills and aquaculture sites
will become exposed to antimicrobials and antimicrobial
resistant bacteria by aerosols and by direct contact with
medicated food in aquacultural areas where annual
usages of antimicrobials run into the metric tons, again
shifting the normal flora of skin, intestine and mucosa of
these workers towards antimicrobial-resistant bacteria
(Burridge et al., 2010; Millanao et al., 2011; Castillo Neyra
et al., 2012).

Concluding remarks

Although the available information is partial and frag-
mented it does not support the hypothesis that the aquatic
environment and its bacteria are unique. On the contrary,
it strongly suggests that aquaculture, like terrestrial
animal farming, is an important source for passage of
large amounts of a variety of antimicrobials into the envi-
ronment. Better information is needed to provide more
accurate assessment of the classes and amounts of
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antimicrobials used in aquaculture in order to determine
their potential impact on the general environment and on
animal and public health (Aarestrup et al., 2000; 2008;
Collignon et al., 2009; Heuer et al., 2009; Love et al.,
2011). Despite the lack of accurate information, it is clear
that excessive amounts of antimicrobials are used in
aquaculture in some countries for both therapeutic and
prophylactic purposes (Arthur et al., 2000; Armstrong
et al., 2005; Sapkota et al., 2008; Rodgers and Furones,
2009; Asche et al., 2010; Barton and Floysand, 2010;
Burridge et al., 2010; Ndi and Barton, 2012). This veteri-
nary use includes antimicrobials also used clinically in
human medicine (Millanao, 2002; Collignon et al., 2009;
Heuer et al., 2009; Millanao et al., 2011). Previous expe-
rience regarding use of antimicrobials in terrestrial animal
husbandry and an analysis of extant information regard-
ing genetic aspects of antimicrobial resistance in aquatic
bacteria strongly suggests that antimicrobial use in aqua-
culture is also likely to select antimicrobial-resistant
bacteria (including piscine pathogens) in aquacultural
environments (Aarestrup et al., 2000; Cabello, 2006;
Nikaido, 2009; Levy and Marshall, 2010; Davis et al.,
2011; Marshall and Levy, 2011; Buschmann et al., 2012).
Evidence also exists suggesting that the resistome of
aquatic bacteria contains novel antimicrobial genetic
determinants (Miranda et al., 2003; Cattoir et al., 2007;
2008). Passage of such antimicrobial resistance determi-
nants from aquatic to terrestrial bacteria will be facilitated
by excessive antimicrobial use and the common
mobilome of aquatic and terrestrial bacteria (Sørum,
2006; Sobecky and Hazen, 2009; Millanao et al., 2011).
These novel antimicrobial resistance elements may ulti-
mately reach human pathogens and complicate therapy
of infections caused by them (Aarestrup et al., 2000;
2008; Miranda et al., 2003; Cattoir et al., 2007; 2008;
Roberts, 2009). The presence of residual antimicrobials in
the meat of target and free-ranging species surrounding
aquaculture sites and the exposure to antimicrobials of
workers that manipulate medicated food is yet another
way in which excessive use of antimicrobials in aquacul-
ture may impact human health (Samuelsen et al., 1992b;
Fortt et al., 2007; Sapkota et al., 2008). These considera-
tions suggest that excessive aquacultural use of antimi-
crobials may potentially have major effects on animal and
human health as well as on the environment.

The global reach of the problem of antimicrobial resist-
ance indicates that the potential complications of antimi-
crobial use in aquaculture need to be addressed globally
(Angulo, 1999; Anderson et al., 2003; Davies, 2009;
Martinez et al., 2009; Levy and Marshall, 2010). This
assessment must include an evaluation of governmental
regulations as well as determination of the classes and
amounts of antimicrobials used in aquaculture in different
countries throughout the world (Davies, 2009; Martinez

et al., 2009; Burridge et al., 2010), and investigation of the
reasons aquacultural conglomerates show drastic differ-
ences in antimicrobial use in different countries (Grave
et al., 1999; 2006; Millanao, 2002; Grave and Hansen,
2009; Burridge et al., 2010; Millanao et al., 2011). Such
information is a prerequisite to regulating aquacultural
use, especially for those antimicrobials important to
human therapeutics. It is also crucial to anticipating poten-
tial problems of antimicrobial resistance related to piscine
and human health stemming from this use which still goes
undetected in a number of countries (Grave et al., 1999;
2006; Grave and Hansen, 2009; Asche et al., 2010;
Burridge et al., 2010; Ibieta et al., 2011; Millanao et al.,
2011; Ndi and Barton, 2012). In parallel with this
increased assessment of antimicrobial use, there is a
need for increased awareness and research focused on
the aquatic resistome and the potential passage of
genetic elements and antimicrobial resistant determinants
from this resistome to the resistomes of fish and human
pathogens (Wright et al., 2008; Cantón, 2009; Wright,
2010). In this regard, the use of metagenomics with
cloning, next generation DNA sequencing and molecular
epidemiological tools are already helping to improve defi-
nition of the resistome of environmental, animal and
human bacteria sharing of antimicrobial resistance genes
(Sørum, 2006; Fondi and Fani, 2010; Sommer et al.,
2010; Kristiansson et al., 2011; Sommer and Dantas,
2011; Forsberg et al., 2012).

Regulation of antimicrobial use in farmed animals in
Europe and in salmon farms in Norway has demonstrated
that reducing the use of antimicrobials is not incompatible
with economically feasible animal farming (Markestad and
Grave, 1997; Aarestrup et al., 2000; 2008; Wegener,
2003; Sørum, 2006; Midtlyng et al., 2011; White and
McDermott, 2011). There is thus a critical need to educate
all stakeholders (including aquacultural corporations) to
understand that sacrificing fish hygiene and well-being for
short-term economic gains is not a winning strategy, and
that appropriate use of prebiotics, probiotics and vaccines
can replace excessive use of antimicrobials (Markestad
and Grave, 1997; Bravo and Midtlyng, 2007; Defoirdt
et al., 2007). The continuous growth of aquaculture and
the potential increase of fish diseases generated by global
warming and globalization increases the urgency of cou-
pling these approaches so that all can reap maximal ben-
efits from antimicrobial use while avoiding the negative
effects of their excessive use on the environment and on
animal and human health (Sapkota et al., 2008; Sørum,
2008; Asche, 2009; Asche et al., 2010).
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